facebook
twitter
vk
instagram
linkedin
google+
tumblr
akademia
youtube
skype
mendeley
Page translation
 

DESIGN AND VALIDATION OF PARAMETERS OF THE DEVICE FOR APPLYING POWDERY PRESERVATIVES INTO THE ENSILED MASS

DESIGN AND VALIDATION OF PARAMETERS OF THE DEVICE FOR APPLYING POWDERY PRESERVATIVES INTO THE ENSILED MASS
H. Hakobyan, candidate of technical sciences, associate professor

Armenian National Agrarian University, Armenia

Championship participant: the National Research Analytics Championship - "Armenia";

The device is proposed for applying powdery preservatives into the ensiled in the trenches mass. The optimal capacity of forage hopper was determined considering the preservative application rate and amount of compacted ensiled mass. The limits of spreading nozzle width were specified subject to the aggregate grasp width, number of pipes and spreading height to provide the preservative uniform application along the full width of aggregate grasp.

Keywords: silage, trench, preservative, spreading, uniformity

Предложено устройство для внесения порошкообразныxконсервантов в силосуемую массу в траншеяx. Определены оптимальная вместимость бункера консервантов в занисимости от нормы подачи консерванта и количества трамбованной силосуемой массы, а так же пределы ширины разбрасывающиxнасадок в зависимости от ширины заxвата агрегата, количества труб и бысоты разбрасывания, с целью обеспечения равномерности подачи консерванта по всей ширине заxвата.

Ключевые слова: силос, траншея, консервант, разбрасывание, равномерность.
 

The key condition for animals’ productivity increase is to establish sound forage source the prime of which is silage.    

At conventional ensilage, due to sugar fermentation, lactic and acetic acids are produced in the fodder resulting in acidic medium (PH=3.9-4.0), the activity increase of putrefaction and lactic acid bacteria is observed. [1].

To obtain high-quality silage the organic acids are used which help reducing dry matter loss [2]. Formic, acetic and benzoic acids as well as sodium salts, ammonia, etc are used as preservatives.   

The preservatives in a powder or liquid form are added into the mown and shredded mass either under field condition or transportation as well as at green mass compacting in trenches.    

The results of studying rather hard and labor intensive process of applying powdery preservatives into the green mass showed that in case the moisture of the green mass is over 70% the preservatives should be applied in to the green mass directly in the trenches while compacting certain layers. For uniform spread of organic acids on the compacted in the trenches green mass we propose the device design introduced beneath    (Fig. 1).

Fig.1Design map of the device for powder preservative spread.

1 - tractor, 2 - hopper, 3 – reduction gear, 4 – ventilator, 5- operating part


Fig. 2 Design diagram of operating part

1 – pipe, 2 – spreading nozzle, 3 – dispenser

The device is fixed on compacting tractor 1 and consists of hopper 2 with mixing box and feed auger, ventilator 4, reduction gear 3, chain drives and operating parts 5. The operating part (Fig. 2.) is introduced by pipes 1 with rectangular cross-sections, at the end of which spreading nozzles 2 are fixed. To the ventilator neck dispenser 3 is attached with 1 operating tool at each side.

The device operates as follows. The torsion torque from the tractor power shaft is transmitted to ventilator 4 through the driveline and reduction gear 3 (Fig. 1). At the same time with the help ofchain gear the mixing box and feed auger in the hopper are set in rotation.  By the feed auger the powdery preservative with the air flow is steadily delivered to the pipes 1 through the dispenser 3 and then through spreading nozzle 2 is spread on the compacted layer of the ensiled mass (Fig. 2).

We determined the optimal capacity of powder preservative hopper, preservative required input subject to the traverse speed of compacting tractor and the thickness of the compacted green mass layer.  

In fact, the preservative is spread on the compacted mass, then a new layer of green mass is added and evened, compacted and again the preservative is spread.  Thus, to determine the optimal capacity of hopper (V, kg), the amount of green mass subject to compacting in the very cycle (G1,t) and preservative application rate (q, kg/t) are considered following the following condition:

V≥G2,                    (1)

where G2- required output of preservative from the pipes in the certain cycle:

G2=qG1kg,                      (2)

The application rate of powdery preservatives into the ensiled mass makes q=2-8 kg/t. Thus, after compacting the green mass in the certain cycle of spread the required amount of preservative in the hopper is determined considering the maximal application rate (8 kg/t). Our observations on the RA farm “Balahovit” showed that at transporting the green mass by KamAz tracks the amount of ensiled mass made 5-7t, and after unloading each track the compacting was done and then the preservative was spread on that compacted mass.  To chose the hopper optimal capacity the dependency graph (Fig. 3) is drawn which illustrates the hopper capacity V dependence on preservative application rate q for the vehicles with 5 and 7t carrying capacity. 

Fig. 3. Hopper required capacity subject to the preservative application rate for
the vehicles with different carrying capacities

The graph shows that hopper with 40 kg capacity completely meets the requirements for 8 kg/t preservative application rate when the amount of the ensiled mass is 5t, and for 7t green mass the preservative application rate is 5.7 kg/t. The results are satisfactory considering that the acceptable error of preservative spread makes up 20%, i.e. 20% of 8 kg/t makes up 1.6 kg/t. On the other hand, choosing the right type of preservative and reducing the green mass moisture it is possible to decrease the application rate to 5.7 kg/t. Thereby, 40 kg capacity hopper completely meets the requirements.

The preservative amount required for spreading in the certain cycle is:

 where V1– the compacted layer volume, m3; γ – bulk weight of compacted layer, t/m3.

The dependence graph of spread preservative required amount (M,kg) and compacted green mass (G1,t) at different application rates (q, kg/t) of preservative  is introduced in Fig. 4

Fig. 4. Dependences of preservative amount and compacted
green mass at different application rates of preservatives

During the device operation it is very important to provide the uniform spread of the required amount of preservative all over the compacted mass area in the certain cycle. For this purpose the process-dependent parameters and operating conditions of the proposed device should be optimized considering the preservative application rate, cross-section area of pipes of the operating part, coefficient of acceptable non-uniformity of spreading the preservative, compacted green mass area, traverse speed and grasp width of tractor aggregate. The cycle time of spreading the required amount of preservative on the compacted mass is determined as follows:     

where n – number of pipes, q1amount of preservative discharged from one pipe, kg/sec.  

Changing G2 and q1 valuesallows to regulate t value in accordance with the cycle time of tractor aggregate operation. It is essential since the cycle time of spreading the required amount of preservative all over the compacted mass area should be equal to the operation cycle time of tractor aggregate.    

The operation cycle time of tractor aggregate is determined as follows:

where  m – travel number of tractor aggregate, l1– travel (stroke length), m;  l2– idle stroke length (at series change), m;  vТ– tractor traverse speed, km/h;  k – coefficient considering thedimensionality change (km/h was converted in m/min), К=0.06.

In case t=t1, the uniform spread of preservative is provided all over the compacted mass area. To provide the preservative uniform spread along the device grasp width, it is necessary that the distances b between the pipes of the operating part should be equal (Fig.2):

where h- distance from the spreading nozzle to the compacted layer, m; d- nozzle width, m; α- angle of nozzle inclination to the vertical.

     Required number of pipes:

where B- grasp width of aggregate, m,

Inserting value B from formula (7) into formula (6), we get:

Proceeding from constructive reasons, accepting α= 450 and В= 4m, the dependency graph of nozzle width (d,m) and number of pipes (n, units) is drawn for different distances from nozzles to the compacted layer (h,m)  (Fig. 5).

Fig. 5.  Dependence of nozzle width on number of pipes

The analysis of the obtained graph shows that at pipe number n=8, 1) if d=0.1 m, thus h= 0.2m, 2) if d=0.2 m, thus h=0.15 m and 3) if d=0.3 m, thus h= 0.1 m. Thus, for preservative uniform spread from 8 pipes all over 4m grasp width  the following limits of nozzle width values d and spread height h are recommended: d=0.10…0.30 m and h= 0.20…0.10 m. These limits of values d and h are recommended to use at different B values (B=1; 2; 3; 4) and n, following the essential requirement B/n=0.5m.

 

References:

1. Arutyunyan T. G. The perfection of technology and mechanism making silo and setting parameters // Thesis..for the degree of candidate of tech. sciences, Erevan, 2012.- p.163 (in Armenian).

2. Karsten Attermann Nielsen, Rudolf Thøgersen, Christer Ohlsson. Ensiling is art– Aarhus, 2003.– p.36 (in Russian).

0
Your rating: None Average: 3.6 (5 votes)
Comments: 10

Nikonov Mihail Vasilyevich

Уважаемый автор! Работа представляет определённый интерес в целях улучшения качества силоса. К сожалению, она носит в большей степени технический характер. Успехов Вам в дальнейшей работе. М. В. Никонов

H. Hakobyan

Уважаемый г-н Никонов. Спасибо за проявленный интерес к нашей работе и хорошый отзыв. Желаем Вам успехов. С уважением О. Акопян.

Maia Azmaiparashvili

Уважаемый автор. Ваши версии в этом направлении представляют определенный интерес. Представленный материал в селъском хозяйстве является хорошим подспорьем для специалистов. Желаю дальнейших успехов. Maia Azmaiparashvili

H. Hakobyan

Уважаемая Майя. Спасибо за хороший отзыв и добрые пожелания. Желаю вам успехов. С уважением О.Акопян

Zakamskii Vladimir

Уважаемый автор! Ваша работа интересна в техническом подходе по отношению к устройству которое Вы предлагаете, однако работу наверное надо было представить в другой секции. Желаю Вам удачи. Владимир Закамский

H. Hakobyan

Уважаемый Владимир. Спасибо за проявленный интерес к нашей работе и комментарий. С уважением О. Акопян

Kuliyeva Hokuma

Автор является сотрудником Аграрного университета, видимо поэтому данная разработка представлена в настоящую секцию. Но представленная и довольно таки подробно разработанная технология имеет определенное значение в сельском хозяйстве. hokuma kuliyeva

H. Hakobyan

Уважаемая г-жа Кулиева. Спасибо за положительный отзыв на нашу работу. С уважением О. Акопян.

Sarsekova Dani

Уважаемый автор! Работа довольна интересная для повышения продуктивности сельскохозяйственной продукции, но на мой взгляд она больше технического плана и должна быть подана в другую секцию. Тем не менее хочу пожелать успехов в дальнейших исследованиях. С ув. Дани

H. Hakobyan

Уважаемая Дани. Спасибо за проявленный интерес к нашей работе и добрые пожелания. Мы очень рады с научным сотрудничеством с Вами. Желаем успехов. С уважением О. Акопян
Comments: 10

Nikonov Mihail Vasilyevich

Уважаемый автор! Работа представляет определённый интерес в целях улучшения качества силоса. К сожалению, она носит в большей степени технический характер. Успехов Вам в дальнейшей работе. М. В. Никонов

H. Hakobyan

Уважаемый г-н Никонов. Спасибо за проявленный интерес к нашей работе и хорошый отзыв. Желаем Вам успехов. С уважением О. Акопян.

Maia Azmaiparashvili

Уважаемый автор. Ваши версии в этом направлении представляют определенный интерес. Представленный материал в селъском хозяйстве является хорошим подспорьем для специалистов. Желаю дальнейших успехов. Maia Azmaiparashvili

H. Hakobyan

Уважаемая Майя. Спасибо за хороший отзыв и добрые пожелания. Желаю вам успехов. С уважением О.Акопян

Zakamskii Vladimir

Уважаемый автор! Ваша работа интересна в техническом подходе по отношению к устройству которое Вы предлагаете, однако работу наверное надо было представить в другой секции. Желаю Вам удачи. Владимир Закамский

H. Hakobyan

Уважаемый Владимир. Спасибо за проявленный интерес к нашей работе и комментарий. С уважением О. Акопян

Kuliyeva Hokuma

Автор является сотрудником Аграрного университета, видимо поэтому данная разработка представлена в настоящую секцию. Но представленная и довольно таки подробно разработанная технология имеет определенное значение в сельском хозяйстве. hokuma kuliyeva

H. Hakobyan

Уважаемая г-жа Кулиева. Спасибо за положительный отзыв на нашу работу. С уважением О. Акопян.

Sarsekova Dani

Уважаемый автор! Работа довольна интересная для повышения продуктивности сельскохозяйственной продукции, но на мой взгляд она больше технического плана и должна быть подана в другую секцию. Тем не менее хочу пожелать успехов в дальнейших исследованиях. С ув. Дани

H. Hakobyan

Уважаемая Дани. Спасибо за проявленный интерес к нашей работе и добрые пожелания. Мы очень рады с научным сотрудничеством с Вами. Желаем успехов. С уважением О. Акопян
PARTNERS
 
 
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
Would you like to know all the news about GISAP project and be up to date of all news from GISAP? Register for free news right now and you will be receiving them on your e-mail right away as soon as they are published on GISAP portal.