facebook
twitter
vk
instagram
linkedin
google+
tumblr
akademia
youtube
skype
mendeley
Wiki
Page translation
 

Determination of hydrogen peroxide by chemiluminescence method in organized media using 9-cyano-10-methylacridinium hydrogen dinitrate

Determination of hydrogen peroxide by chemiluminescence method in organized media using 9-cyano-10-methylacridinium hydrogen dinitrateDetermination of hydrogen peroxide by chemiluminescence method in organized media using 9-cyano-10-methylacridinium hydrogen dinitrateDetermination of hydrogen peroxide by chemiluminescence method in organized media using 9-cyano-10-methylacridinium hydrogen dinitrate
Bondarenko Nataliia, associate professor, candidate of pharmaceutics, associate professor

Mykola Blazheyevskiy, professor, doctor of chemistry, full professor

National University of Pharmacy, Ukraine

Championship participant: the National Research Analytics Championship - "Ukraine";

the Open European-Asian Research Analytics Championship;

The influence of surfactants Tween-80, Triton X-100, SodiumdodecylsulfateandCetylpyridiniumchloride on the chemiluminescence in the system of 9-cyano-10-methylacridiniumhydrogendinitrateH2O2was studied. It was found that Tween-80 has an activating effect on the occurrence of chemiluminescence  in the study of a system in the carbonate buffer with pH 11.6. The procedure for quantitative determination of hydrogen peroxide in the presence of Tween-80 in model solutions was developed. Linearity was studied over concentration range (0.2–5)∙107mol·L1and correlation coefficient was found to be 0.99 for regression line (ΔICL= 3.26∙107с + 0.99).  LOQis 2·10–8 mol·L–1. The presented chemiluminescence method can be used for the determination of hydrogen peroxide amount in the wash water after the equipment sanitization in pharmacies and pharmaceutical companies.

Keywords: chemiluminescence, quantitative determination, hydrogen peroxide, 9-cyano-10-methylacridiniumhydrogen dinitrate, surfactants, Tween-80.

 

Cleaning and sanitization of equipment for production of medicines in pharmacies as required under GMP carried out using hydrogen peroxide (H2O2) in combination with detergents [1]. In the case of the practical application of such compositions it is necessary to prove that these substances are removed from the equipment before the beginning of the production in the new seria of medicines. Therefore, the choice of routine analytical method for monitoring of the process of equipment cleaning and sanitizing has a considerable practical importance. It is important, that H2O2content control method was quite specific, and the presence of residues of active substances and excipients from which the laundered equipment using H2O2and detergent, do not commit any effect on the analysis.

In the scientific literature several methods of H2O2determination, based on its oxidative ability are described. For example, the spectrophotometric method allows to determine 1.5·10–6 mol·L–1of H2O2[2], it involves oxidation of potassium iodide to free iodine. Also, the determination of H2O2was proposed to be done by chemiluminescence and enzyme-chemiluminescence methods, with lower detection limits 1.4∙10–9and 8.0∙10–8mol·L–1respectively [3– 5]. Luminescence and enzyme-spectrophotometric methods with H2O2detection limit 1·10–6 and 1·10–5 mol·L–1respectively somewhat are less sensitive [6, 7]. An automatic system for streaming-injection chemiluminescence determination of H2O2by reaction with phenyl-10-methylacridinii-9-carboxylate [8] linearity concentration range of (1-10)×10–6mol·L–1 is also described. A method of analysis by HPLC [9] with electrochemical detection, which allows to determine the H2O2at 7·107mol·L–1 is shown.

For determination of H2O2in the atmosphere and surface waters in the concentration range of 3 ng·mL–1to 0.3 mg·mL–1mainly enzyme-photometric procedures using as the indicator reaction the oxidizing N,N-dimethyl-p-phenylenediamine [10] or diamonium salt 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid(ABTS) [11] in the presence of horseradish peroxidase are currently used. The possibility of usage a chemiluminescence reaction as indicator for the determination of H2O2in water with lucigenin in alkaline environment in the presence of various metals-catalysts was shown [12]. The method of luminescence determination of H2O2in the waters of pharmaceutical companies was developed, which is based on sensitized luminescence Eu(III)-ions in mixed-ligand complex with oxytetracycline that allows to determine 0.017 μg·mL–1 (5·10–7 mol·L–1)of H2O2[13].

It is known that chemiluminescence method is faster, easier and cheaper in performance compared with chromatographic, and more sensitive compared with spectrophotometric where component detergents and disinfectants are determined, because of the absence of any strong chromophores. With its high sensitivity, it can be successfully used for the determination of analytes in samples of wash water after equipment rinsing with purified water.

The aim of this work is to develop the procedure of quantitative determination of trace amounts of H2O2 in the presence of surfactants (SAC) by chemiluminescence method using 9-cyano-10-methylacridinium dinitrate dinitrate(CMA) as an indicator.

In the presence of hydrogen peroxide and base, acridinium salts lead to chemiluminescence emission. Blazejowski and collaborators have studied the chemiluminescence of CMА, in the presence of hydrogen peroxide, using theoretical methods [14, 15].Scheme (fig.1) shows the proposed mechanism for chemiluminescence of CMАin the presence of H2O2 and base, which postulates the cyclic peroxidic intermediate.

 

Fig. 1. Convert CMA in chemiluminescence reaction with H2O2

 

The determination of H2O2by chemiluminescence method in the reaction with the CMA was proposed by Midyaniy S.V. firstly [16]. He showed that chemiluminescence is already observed at pH ≥ 5. The authors [17] showed the calibration dependence determination of H2O2at pH 10.6 with a limit of detection (LOD) 1.5 ng persample.

We investigated the effect of SAC of a different nature (nonionic SAC - Triton X-100 and Tween-80, anionic - sodium dodecylsulfate and cationic - cetylpyridiniumchloride), the solutions mixing order and pH was studied, as well as the nature of buffer solutions on the intensity of the emerging chemiluminescence in the system CMА – H2O2 – base, and then the possibility of quantitative determination of H2O2 in model solutions was found.

Materials, reagents and methods

9-cyano-10-methylacridinium hydrogen dinitrate waspreparedbytheoxidation9-cyano-10-methylacridan[18, 19], withdilutenitricacid[20]. The content of all HNO3dilute solutions was 10–3 mol·L–1. These solutions are quite stable under normal conditions.

In this work concentrate solutions of sodium hydroxide without carbonates are used [21].

Other reagents, including SAC, of p.a. purity were from Merck or Aldrich. Doubly distilled water was the medium in all the measurements.

We used 0.01 mol·L–1 glycine buffer solution (pH 11.6), 0.1 mol·L–1carbonate buffer solutions (pH 10.85 – 11.6), 0.1 mol·L–1borate buffer solution (pH 10.8) and phosphate buffers (pH 7.0 – 9.5).

Prepearing of carbonate buffer. 0.2 mol·L–1solution of alkali was added to 0.1 mol·L–1sodium carbonate solution to reach the pH of 11.6 (potentiometric with glass electrode ESL-43-07 and silver-chloride electrode and ionomer laboratoryI-130 (ZIP, Gomel, Belarus).

Prepearing of Triton X-100 10–2 mol·L–1solution. 0.32 g of the substance (accurately weighed) was dissolved in a 50 mL flask and brought to the mark with doubly distilled water at 293 K.

Prepearing of sodium dodecylsulfate 10–2 mol·L–1solution. 0.14 gof the substance (accurately weighed) dissolved in a 50 mL flask and brought to the mark with doubly distilled water at 293 K.

Prepearing of cetylpyridiniumchloride 10–2 mol·L–1solution. 0.35 gof the substance (accurately weighed) dissolved in a 100 mL flask and brought to the mark with doubly distilled water at 293 K.

Prepearing of Tween-80 4.9·10–5 mol·L–1solution. 0.06 gof the substance (accurately weighed) dissolved in a 100 mL flask and brought to the mark with doubly distilled water at 293 K.

Hydrogen peroxide (Н2О2) solutions were prepared from 57% A.C.S. preparation by its dilution indouble-distilled water;volume was brought to the markat 293 K. This solution is stored at reduced temperature (281 – 283 K).

Requiredweighingwas performedontheanalyticalbalanceADV-200 withanaccuracyof± 0.1 mg.

The intensity of chemiluminescence was measured in conditional units (c.u.) on the device with photoelectric multiplier FEU-84-A, using measurement of low currents IMT-0.5 and quick-acting (time constant 0.1 s) automatic potentiometer. Reaction that accompanies CL was performed in quartz cell of cylindrical form with 30 mm diameter with work volume of 10 mL. The following order of reagents mixing was performed: 0.50 mL of the solution of chemiluminescence indicator was added with the help of dosage pipette P-1 to the mix of appropriate buffer and H2O2(with SAC solution or without) and kinetic curve of chemiluminescence intensity (ICL) in relative units (ICL) – time (s) was registered. Dosage pipette is built in to the mobile keeper, that isolates photocatode of photoelectric multiplier from outside light, and further allows to work at the common lighting. All experiments were performed at 293 K.

The performed experiments revealed that the following mixing order when CMАsolution is the last is optimal.

Application of carbonate buffer with pH 11.6 showed optimum conditions for maximum chemiluminescence intensity (ІCL) among glycine, carbonate, borate and phosphate buffer solutions. In the presence of SAC as Triton X-100, sodium dodecylsulfate and cetylpyridiniumchloride essentially doesn’t effect the ІCLin the system CMА – H2O2– SAC,In the presence of nonionic SAC Tween-80 in the concentrations range of 0.03 – 0.12mg·mL–1the increasing of the maximum intensity of chemiluminescence, ІCLapproximately in 2 times compared with that in the absence of SAC was observed (table 1).

 

Activating effect of Tween-80 for chemiluminescence in the system CMА – H2O2– SACwas used to study procedure of determination of H2O2in model mixtures. The linear dependence of ΔICLon the H2O2concentration in the presence of 4.90·10–5 mol·L–1 Tween-80 was observed in the range
(0.2–5)∙107mol·L1H2O2. The equation of calibration curve isΔICL= 3.26∙107с + 0.99, r= 0.99, where ΔІCL= ІCLІ0, І0– the maximum intensity of chemiluminescence in the system CMА – H2O2,ICL– maximum intensity of chemiluminescence in the system CMА – H2O2– SAC. The optimal concentration of Tween-80 was selected from the data in table. 1.

Fig.2. Calibration curve of H2O2 quantitative determinationin the system CMА – H2O2– Tween-80. рН = 11.6, с(СМА) = 1.25·10–5 mol·L–1; c(Tween-80)= 4.90·10–5 mol·L–1.

 

The results of the quantitative determination of H2O2 in the presence of Tween-80 by calibration curve method in model mixtures are presented in table 2.

 

Conclusions

Effect of surfactants on chemiluminescence in the system CMА – H2O2 – base was studied. It was found that Tween-80 has an activating effect on the occurrence of chemiluminescence  in the study of a system in the carbonate buffer with pH 11.6. The procedure for quantitative determination of hydrogen peroxide in the presence of Tween-80 in model solutions was developed. The linear ΔІCLconcentration in the range (0,2 – 5)∙10–7 mol·L–1of hydrogen peroxide was observed (ΔICL= 3.26∙107с + 0.99, r= 0.99). LOQis 2·10–8 mol·L–1.

 

References:

  • 1. Настанова СТ-Н МОЗУ 42-4.6:2015. – Вимоги до виготовлення стерильних та асептичних лікарських засобів в умовах аптек. – Київ, МОЗ України, 2016.
  • 2. Ovenston T. C. The spectrophotometric determination of small amounts of hydrogen peroxide in aqueous solutions / T. C. Ovenston, W. T. Rees. // Analyst. – 1950. – V. 75, № 889. – Р. 204–208.
  • 3. Diaz N.A. Hydrogen peroxide assay by using enhanced chemiluminescence of the luminol –H2O2– horse radish peroxidase system: Comparative studies / N.A. Diaz, G. Sanchez, J.A. Garcia. // Anal. Chim. Acta. – 1996. – V. 327. – P. 161–165.
  • 4. Kaczmarek M. Chemiluminescence as the energy transfer effect in the system Eu(III) – The noiltrifluoroacetone H2O2– NaOH/ M. Kaczmarek, K. Staninski, M. Elbanowski. // J. Photochem. Phptobiolog. A. – 2003. – V. 154. – P. 273–277.
  • 5. Lin J. Hydrogen peroxide chemiluminescent flow-through sensor based on the oxidation with periadate immobilized on ion-exchange resin / J. Lin, K. Sato, M. Yamada. // Mikrochim. J. – 2001. – V. 69. – P. 73–80.
  • 6. Determination of hydrogen peroxide using β-CD-hemin as a mimetic enzyme of peroxidase / [Y. Huang, R. Cai, L. Mao and others]. // Analyt. Sci. – 1999. – V. 15. – P. 889–894.
  • 7. Original Paper detection of hydrogen peroxide in river water via a microplate luminescence assay with time-resolved «gated» detection / [W. Lei, A. Durkop and others]. // Microchim. Acta. – 2003. – V. 143. – P. 269–274.
  • 8. Kalfenbach M. S. Acridinium ester chemiluminescence: pH dependent hydrolysis of reagents and flow injection analysis of hydrogen peroxide and glutamate / M. S. Kalfenbach, M. A. Arnold. // Microchim. Acta. – 1992. – V. 108, № 3 ‑ 6. – P. 205–219.
  • 9. Determination of hydrogen peroxide by high-performance liquid chromatography with cation-exchange resin gel column and electrochemical detection / [A. Takahashi, R. Hashimoto, S. Kumazawa and others]. // Analyt.Sci.. – 1999.– V. 15. – Р. 481–483.
  • 10. Еремина И. Д. Проточно-инжекционный анализ. Спектрофотометрическое определение пероксида водорода в атмосферных осадках с помощью пероксидазы / И. Д. Еремина, Л. К. Шпигун, Ю. А. Золотов. // Ж. аналит. хим. – 1989. – №2. – С. 341–345.
  • 11. Золотов Ю. А. Химические тест-методы / Ю. А. Золотов, В. М. Иванов, В. Г. Амелин. – Москва: Эдиториал УРСС, 2002. – 340 с.
  • 12. Перегуд Е. А. Инструментальные методы контроля загрязнения атмосферы / Е. А. Перегуд, Д. О. Горелик. – Ленинград: Химия, 1981. – 384 с.
  • 13. Бельтюкова С. В. Люминесцентное определение пероксида водорода в водах фармацевтических предприятий / С. В. Бельтюкова, Е. О. Витюкова, А. В. Егорова. // Труды Одесск. политехнич. ун-та. – 2006. – №2. – С. 203–207.
  • 14. Origin of chemiluminescence accompanying the reaction of the 9-cyano-10-methylacridinium cation with hydrogen peroxide / [A. Wróblewska, O. M. Huta, S. V. Midyaniy and others]. // J. Org. Chem. – 2004. – V. 69. – P. 1607–1614.
  • 15. Rak J. Toward an understanding of the chemiluminescence accompanying the reaction of 9-carboxy-10-methylacridinium phenylester with hydrogen peroxide / J. Rak, P. Skurski, J. Błażejowski. // J. Org. Chem. – 1999. – V. 44. – P. 3002–3008.
  • 16. Мідяний С. В. Нітрат 9-ціано-10-метилакридинію – новий аналітичний хемілюмінесцентний реагент : автореф. дис. на здобуття наук. ступеня канд. хім. наук / Мідяний С. В. – Нац. ун-т ім. Т. Шевченка, Київ, 1998. – 19 с.
  • 17. Addition of nucleophilics to the 9-cyano-10-methylacridinium cation utilization in their chemiluminescent assay / [A. Wróblewska, O. M. Huta, I. O. Patsay and others]. // Anal. Chim. Acta.. – 2004. – V. 507. – P. 229–236.
  • 18. Kaufmann A. Űber Cyan-cyclaminane / A. Kaufmann, A. Albertini. // Ber. Dtsch. Chem. – 1909. – V. 42, № 2 – P. 1999–2008.
  • 19. Kaufmann A. Űber Cyan-cyclaminane III / A. Kaufmann, A. Albertini. // Ber. Dtsch. Chem. – 1911. – V. 44, № 3. – P.2052–2058.
  • 20. 9-cyano-10-methylacridiniumhydrogendinitrate/ [O. M. Huta, I. O. Patsay, A. Konitzandothers]. // ActaCryst. – 2002. – V. 58. – P. 295–297.
  • 21. Лайтинен Г. А. Химический анализ / Г. А. Лайтинен, В. Е. Харрис. – Москва: Химия, 1979. – 624 с.
0
Your rating: None Average: 7.4 (5 votes)
Comments: 5

Tegza Alexandra

Уважаемые коллеги! Очень интересная кропотливая работа. Ваши исследования актуальны, а полученые результаты значимы! Желаю вам дальнейших успехов в научных исследованиях. С уважением Александра Тегза

Bondarenko Nataliia

Спасибо большое всем за ваши комментарии!

Prysiazhniuk Oleksandr

Уважаемые коллеги, ваша работа - оригинальное исследование по разработке новой хемилюминесцентной методики определения следовых количеств перекиси водорода. Для повышения чувствительности использовано изменение свойств среды за счет применения ПАВ. В мицелярной среде достигнут наивысший аналитический сигнал. Актуальность работы неоспорима и она имеет аналитический выход. Желаю Вам дальнейших успехов!

Kokolova Luidmila

С интересом прочитала Вашу статью! Впечатляющий длительный период научного исследования, который предполагает высокую значимость полученных результатов и выводов. Я желаю Вам успехов в дальнейших исследованиях

Bondarenko Nataliia

Благодарим Вас за проявленный интерес к нашей работе! Спасибо большое!
Comments: 5

Tegza Alexandra

Уважаемые коллеги! Очень интересная кропотливая работа. Ваши исследования актуальны, а полученые результаты значимы! Желаю вам дальнейших успехов в научных исследованиях. С уважением Александра Тегза

Bondarenko Nataliia

Спасибо большое всем за ваши комментарии!

Prysiazhniuk Oleksandr

Уважаемые коллеги, ваша работа - оригинальное исследование по разработке новой хемилюминесцентной методики определения следовых количеств перекиси водорода. Для повышения чувствительности использовано изменение свойств среды за счет применения ПАВ. В мицелярной среде достигнут наивысший аналитический сигнал. Актуальность работы неоспорима и она имеет аналитический выход. Желаю Вам дальнейших успехов!

Kokolova Luidmila

С интересом прочитала Вашу статью! Впечатляющий длительный период научного исследования, который предполагает высокую значимость полученных результатов и выводов. Я желаю Вам успехов в дальнейших исследованиях

Bondarenko Nataliia

Благодарим Вас за проявленный интерес к нашей работе! Спасибо большое!
PARTNERS
 
 
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
image
Would you like to know all the news about GISAP project and be up to date of all news from GISAP? Register for free news right now and you will be receiving them on your e-mail right away as soon as they are published on GISAP portal.